

Identifying chemical elements using laboratory-based spectral X-ray imaging

F. Buyse ^{1,2}*, M.N. Boone ^{2,3}, F. Van Assche ^{2,3}, S. Faucher ⁴, P. Moonen ⁴, S. Dewaele ⁵ and V. Cnudde ^{1,2,6}

¹ Pore-scale Processes in Geomaterials Research Team (PProGRess), Ghent University, Belgium

- ² UGCT Centre for X-ray Tomography, Ghent University, Belgium
 - ³ Radiation Physics Research Group, Ghent University, Belgium
- ⁴ DMEX Centre for X-ray Imaging, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, France
 ⁵ Laboratory for Mineralogy and Petrology (MinPet), Ghent University, Belgium
- ⁶ Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, The Netherlands *Speaker : florian.buyse@ugent.be

1. Introduction

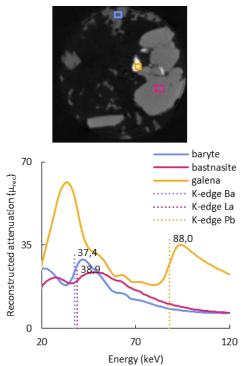
Methods have been developed to improve the quantitative assessment of density and chemical composition of materials using either dual-energy µCT or projection-based simulations. Despite the measures to untangle these dependencies, it is difficult to overcome this using a polychromatic X-ray source within laboratory-based µCT systems. Recent developments in the spectroscopic capabilities of detectors [1] allow us to measure the energy of each photon using the so-called spectral detectors. Direct 3D chemical information can be derived from the identification of element-specific K-edges in the attenuation profile. However, this technique still requires improved data processing and analysis. We compare the results from two different spectral laboratory-based µCT setups.

2. Materials and Methods

Polished rock labs were first scanned using a scanning electron microscope with an energy-dispersive X-ray spectrometer to acquire mineral distribution maps. Points of interest were selected to cover a whole range of chemical elements within the practical energy margins of current spectral detectors (i.e., elements with an atomic number higher than molybdenum, Z = 42). At these points of interest, cylindrical 5 mm long cores with a diameter of 2 mm were prepared using an upright drilling machine. Spectral scans were taken with a spectral line detector incorporated in the Tescan UniTOM XL at DMEX-UPPA (France) and were compared with results acquired with a CdTE sensor coupled to a HEXITEC ASIC detector mounted in a WiggleCam configuration at UGCT-UGent (Belgium).

3. Results and Discussion

Sudden changes are observed in the attenuation profile related to the presence of specific elements (Fig. 1). The spectral line detector outperforms reconstructed scans taken with a spectral panel detector due to the higher number of lateral pixels in the detector. However, a spectral panel detector already allows the live visualization of K-edges at a selected energy range over a larger area [2].


4. Acknowledgements

Florian Buyse is funded by the European Electron and X-ray Imaging Infrastructure (EXCITE); this project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101005611. SEM instrumentation has received funding from Research Foundation – Flanders (FWO) for medium-scale research infrastructure under grant agreement number I013118N.

5. References

[1] C., Egan et al., 10.1038/srep15979

[2] F., Van Assche et al., 10.3390/s21020563

Figure 1. Qualitative detection of K-edges in the attenuation profile of minerals.